Геометрия 9 класс

Пояснительная записка

Рабочая программа составлена на основе:

  1. Федеральный компонент государственного образовательного стандарта общего образования;
  2. Федерального закона «Об образовании в Российской Федерации» от 29.12.2012г. ФЗ-№273
  3. Рабочая программа по геометрии 7 - 11 класс / Сост. Н.Ф.Гаврилова
  4. Ученого плана отделения МАОУ «Голышмановская СОШ №2» «Боровлянская СОШ»

Рабочая программа по геометрии в 9 классе рассчитана на 68 часов, из расчета 2 часа в неделю.

Цели обучения математики в общеобразовательной школе определяются ее ролью в развитии общества в целом и формировании личности каждого отдельного человека.

Геометрия – один из важнейших компонентов математического образования. Она необходима для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, развития пространственного воображения и интуиции, математической культуры, эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

Программа направлена на достижение следующих целей:

  • овладение системой математических знаний и умений, необходимых для применения практической деятельности изучения смежных дисциплин, продолжения образования;
  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений;
  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
  • воспитание культуры личности, отношения к математике как части общечеловеческой культуры, понимание значимости математики для научно технического прогресса;
  • развитие представлений о полной картине мира, о взаимосвязи математики с другими предметами.

Рабочая  программа выполняет две основные функции:

  • Информационно-методическая функция позволяет всем участникам образовательного процесса получить представление о целях, содержании, общей стратегии обучения, воспитания и развития учащихся средствами данного учебного предмета.
  • Организационно-планирующая функция предусматривает выделение этапов обучения, структурирование учебного материа­ла, определение его количественных и качественных характери­стик на каждом из этапов, в том числе для содержательного на­полнения промежуточной аттестации учащихся.

 

Основные цели курса:

- овладение системой математических знаний и умений, необходимых в практической деятельности, продолжения образования;

- приобретение опыта планирования и осуществления алгоритмической деятельности;

- освоение навыков и умений проведения доказательств, обоснования  выбора решений;

- приобретение умений ясного и точного изложения мыслей;

- развить пространственные представления и умения, помочь освоить основные факты и методы планиметрии;

- научить пользоваться геометрическим языком для описания предметов.

В основу курса геометрии для 9 класса положены такие принципы как:

  • Целостность и непрерывность, означающие, что данная ступень является важным звеном единой общешкольной подготовки по математике.
  • Научность в сочетании с доступностью, строгость и систематичность изложения (включение в содержание фундаментальных положений современной науки с учетом возрастных особенностей обучаемых).
  • Практико-ориентированный подход, обеспечивающий отбор содержания, направленного на решение простейших практических задач планирования деятельности, поиска нужной информации.
  • Принцип развивающего обучения (обучение ориентировано не только на получение новых знаний, но и активизацию мыслительных процессов, формирование и развитие у школьников обобщенных способов деятельности, формирование навыков самостоятельной работы).

Задачи обучения:

- учить учащихся выполнять действия над векторами как направленными отрезками;

-познакомить с использованием векторов и метода координат при решении геометрических     задач;

- развить умение учащихся применять тригонометрический аппарат при решении геометрических задач;

- расширить знания учащихся о многоугольниках;

- рассмотреть понятия длины окружности и площади круга для их вычисления;

- познакомить учащихся с понятием движения и его свойствами на плоскости: симметриями, параллельным переносом, поворотом;

- выделить основные методы доказательств, с целью обоснования (опровержения) утверждений и для решения ряда геометрических задач;

- учить проводить рассуждения, используя математический язык, ссылаясь на соответствующие геометрические утверждения;

- использовать алгебраический аппарат для решения геометрических задач;

- дать начальное представление о телах и поверхностях в пространстве.

 

Контрольные работы направлены на проверку уровня базовой подготовки учащихся, а также на дифференцированную проверку владения формально-оперативным математическим аппаратом, способность к интеграции знаний по основным темам курса. 

Промежуточный контроль знаний осуществляется с помощью проверочных самостоятельных работ, электронного тестирования, практических работ.

 

Общая характеристика учебного предмета, курса

Геометрия – один из важнейших компонентов математического образования. Она необходима для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, развития пространственного воображения и интуиции, математической культуры, эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

В курсе геометрии 9-го класса формируется понятие вектора. Особое внимание уделяется выполнению операций над векторами в геометрической форме. Учащиеся дополняют знания о треугольниках сведениями о методах вычисления элементов произвольных треугольниках, основанных на теоремах синусов и косинусов. Даются систематизированные сведения о правильных многоугольниках, об окружности, вписанной в правильный многоугольник и описанной. Особое место занимает решение задач на применение формул. Даются первые знания о движении, повороте и параллельном переносе. Серьезное внимание уделяется формированию умений рассуждать, делать простые доказательства, давать обоснования выполняемых действий. Параллельно закладываются основы для изучения систематических курсов стереометрии, физики, химии и других смежных предметов.

Для развития устойчивого интереса к учебному процессу, уроки геометрии проводятся с использованием компьютера, проектора, экрана . Доказательство геометрических фактов ведется в среде математической лаборатории Динамическая геометрия. Некоторые разделы геометрии закрепляются посредством тестов на ПК. Для этого используется пакет прикладных программ Microsoft Office и УМК Живая математика – это компьютерная система моделирования, исследования и анализа широкого круга задач математики. Программа Живая Математика помогает конструировать интерактивные математические модели, давая начальные представления о понятиях формы тела, числах и т.п. Современный компьютерный чертеж можно деформировать и видоизменять, а результаты этих изменений допускают дальнейшую компьютерную обработку.  

 

Планируемые результаты изучения учебного предмета, курса

На основании требований Государственного образовательного стандарта  в содержании предполагается реализовать актуальные в настоящее время компетентностный, личностно ориентированный,  деятельностный подходы, которые определяют задачи обучения:

  • Продолжить овладение системой геометрических знаний и умений, необходимых для приме­нения в практической деятельности, изучения смежных дисциплин, продолжения образования.
  • Продолжить интеллектуальное развитие, формирование качеств личности, необходимых че­ловеку для полноценной жизни в современном обществе; ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
  • Формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
  • Воспитание культуры личности, отношение к геометрии как к части общечеловеческой куль­туры, понимание значимости геометрии для научно-технического прогресса.

В ходе преподавания геометрии в 9 классе, работы над формированием у учащихся перечисленных в программе знаний и умений следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

  • планирования и осуществления алгоритмической деятельности, выполнения заданных и кон­струирования новых алгоритмов;
  • овладевали приемами аналитико-синтетической деятельности при доказательстве теории и решении задач;
  • целенаправленно обращались к примерам из практики, что развивает умения учащихся вычле­нять геометрические факты, формы и отношения в предметах и явлениях действи­тельности, использовали язык геометрии для их описания, приобретали опыт исследова­тельской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;
  • ясного, точного, грамотного изложения своих мыслей в устной и письменной речи; проведе­ния доказательных рассуждений, аргументаций, выдвижения гипотез и их обосно­вания; поиска, систематизации, анализа и классификации информации, использования раз­нообразных информационных источников, включая учебную и справочную литературу, со­временные информационные технологии.

 

В результате изучения данного курса обучающиеся должны уметь/знать:

  • Знать определения вектора и равных векторов; изображать и обозначать векторы, откладывать от данной точки вектор, равный данному; уметь решать задачи.
  • Уметь объяснить, как определяется сумма двух и более векторов; знать законы сложения векторов, определение разности двух векторов; знать, какой вектор называется противоположным данному; уметь строить сумму двух и более данных векторов, пользуясь правилами треугольника, параллелограмма, многоугольника, строить разность двух данных векторов; уметь решать задачи.
  • Знать, какой вектор называется произведением вектора на число; уметь формулировать свойства умножения вектора на число; знать, какой отрезок называется средней линией трапеции; уметь формулировать и доказывать теорему о средней линии трапеции; уметь решать задачи.
  • Знать формулировки и доказательства леммы о коллинеарных векторах и теоремы о разложении вектора по двум неколлинеарным векторам, правила действий над векторами с заданными координатами; уметь решать задачи.
  • Знать и уметь выводить формулы координат вектора через координаты его конца и начала, координат середины отрезка, длины вектора и расстояния между двумя точками; уметь решать задачи.
  • Знать и уметь выводить уравнения окружности и прямой; уметь строить окружности и прямые, заданные уравнениями; уметь решать задачи.
  • Знать, как вводятся синус, косинус и тангенс углов от 0º до 180º; уметь доказывать основное тригонометрическое тождество; знать формулы для вычисления координат точки; уметь решать задачи.
  • Знать и уметь доказывать теорему о площади треугольника, теоремы синусов и косинусов; уметь решать задачи.
  • Уметь объяснить, что такое угол между векторами; знать определение скалярного произведения векторов, условие перпендикулярности ненулевых векторов, выражение скалярного произведения в координатах и его свойства; уметь решать задачи.
  • Знать определение правильного многоугольника; знать и уметь доказывать теоремы об окружности, описанной около правильного многоугольника, и окружности, вписанной в правильный многоугольник; знать формулы для вычисления угла, площади и стороны правильного многоугольника и радиуса вписанной в него окружности; уметь их вывести и применять при решении задач.
  • Знать формулы длины окружности и дуги окружности, площади круга и кругового сектора; уметь применять их при решении задач.
  • Уметь объяснить, что такое отображение плоскости на себя; знать определение движения плоскости; уметь доказывать, что осевая и центральная симметрии являются движениями и что при движении отрезок отображается на отрезок, а треугольник – на равный ему треугольник; уметь решать задачи.
  • Уметь объяснить, что такое параллельный перенос и поворот; доказывать, что параллельный перенос и поворот являются движениями плоскости; уметь решать задачи.

Иметь представления о простейших многогранниках, телах и поверхностях в пространстве; знать формулы для вычисления площадей поверхностей и объёмов тел.

 

 

 

 

 

 

Содержание учебного предмета, курса

  1. Векторы. Метод координат. (22 часа)

Цель: научить обучающихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; познакомить с использованием векторов и метода координат при решении геометрических задач.

Понятие вектора. Равенство векторов. Сложение и вычитание векторов. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Простей­шие задачи в координатах. Уравнения окружности и прямой. Применение векторов и координат при решении задач.

Вектор определяется как направленный отрезок и действия над векторами вводятся так, как это принято в физике, т. е. как действия с направленными отрезками. Основное внимание дол­жно быть уделено выработке умений выполнять операции над векторами (складывать векторы по правилам треугольника и па­раллелограмма, строить вектор, равный разности двух данных векторов, а также вектор, равный произведению данного вектора на данное число):

На примерах показывается, как векторы могут применяться к решению геометрических задач. Демонстрируется эффективность применения формул для координат середины отрезка, расстояния между двумя точками, уравнений окружности и прямой в конк­ретных геометрических задачах, тем самым дается представление об изучении геометрических фигур с помощью методов алгебры.

  1. Соотношения между сторонами и углами треугольника. Скалярное произведение векторов. (14 часов)

Цель: развить умение обучающихся применять тригонометрический аппарат при решении геометрических задач.

Синус, косинус и тангенс угла. Теоремы синусов и косину­сов. Решение треугольников. Скалярное произведение векторов и его применение в геометрических задачах.

Синус и косинус любого угла от 0° до 180° вводятся с помо­щью единичной полуокружности, доказываются теоремы синусов и косинусов и выводится еще одна формула площади треугольни­ки (половина произведения двух сторон на синус угла между ними). Этот аппарат применяется к решению треугольников.

Скалярное произведение векторов вводится как в физике (произведение для векторов на косинус угла между ними). Рас­сматриваются свойства скалярного произведения и его примене­ние при решении геометрических задач.

Основное внимание следует уделить выработке прочных на­выков в применении тригонометрического аппарата при реше­нии геометрических задач.

  1. Длина окружности и площадь круга. (11 часов)

Цель: расширить знание обучающихся о многоугольниках; рассмотреть понятия длины окружности и площади круга и формулы для их вычисления.

Правильные многоугольники. Окружности, описанная около правильного многоугольника и вписанная в него. Построение правильных многоугольников. Длина окружности. Площадь круга.

  В начале темы дается определение правильного многоуголь­ника и рассматриваются теоремы об окружностях, описанной около правильного многоугольника и вписанной в него. С помо­щью описанной окружности решаются задачи о построении пра­вильного шестиугольника и правильного 2л-угольника, если дан правильный л-угольник.

  Формулы, выражающие сторону правильного многоугольника и радиус вписанной в него окружности через радиус описанной окружности, используются при выводе формул длины окружно­сти и площади круга. Вывод опирается на интуитивное представ­ление о пределе: при неограниченном увеличении числа сторон правильного многоугольника, вписанного в окружность, его пери­метр стремится к длине этой окружности, а площадь — к площа­ди круга, ограниченного окружностью.

  1. Движения. (11 часов)

 Цель: познакомить обучающихся с понятием движения и его свойствами, с основными видами движений, со взаимоотношениями наложений и движений.

Отображение плоскости на себя. Понятие движения. Осевая и центральная симметрии. Параллельный перенос. Поворот. На­ложения и движения.

Движение плоскости вводится как отображение плоскости на себя, сохраняющее расстояние между точками. При рассмотре­нии видов движении основное внимание уделяется построению образов точек, прямых, отрезков, треугольников при осевой и центральной симметриях, параллельном переносе, повороте. На эффектных примерах показывается применение движений при решении геометрических задач.

Понятие наложения относится в данном курсе к числу основ­ных понятий. Доказывается, что понятия наложения и движения являются эквивалентными: любое наложение является движени­ем плоскости и обратно. Изучение доказательства не является обязательным, однако следует рассмотреть связь понятий нало­жения и движения.

 

  1. Повторение. Решение задач. (10 часов)

Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс геометрии 9 класса.

 

Тематическое планирование

 

по _____геометрии________

Учебный год_______2018-2019___________

Класс_______9___________________

Количество часов по учебному плану ОУ: всего _____68________в неделю_______2_________.

Плановых контрольных работ_____6_____________.

Планирование составлено на основе программы по геометрии 7 - 11 класс / Сост. Н.Ф.Гаврилова -М. ВАКО: 2013г

Учебник: Геометрия  7-9 классов общеобразовательных учреждений Атанасян, Л. С. [Текст] / Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др. -М.: Просвещение, 2013г

Календарно-тематическое планирование 9 класс

 

№ урока

Тема урока

Элементы содержания

Планируемые результаты обучения

Виды контроля

(формы)

Дата по плану

Дата по факту

Векторы. Метод координат (22 ч.)

1

2

3

Повторение материала 7-8 класса

медиана, биссектриса, высота, треугольника, параллелограмм,

трапеция, ромб, квадрат

выполнять задачи из разделов курса VIII класса, используя теорию: теорема Пифагора, свойство средней линии треугольника, формулы вычисления площади треугольника; свойства,  признаки параллелограмма, ромба, прямоугольника.

ФО

СР     

 

 

4

5

Понятие вектора.

определение вектора, виды векторов, длина вектора

-уметь изображать, обозначать вектор, нулевой вектор;

-знать виды векторов

ФО

ИРД

 

 

6

7

8

Сложение и вычитание векторов.

вектор, операции сложения и вычитания векторов

-уметь практически складывать и вычитать два вектора, складывать несколько векторов

ФО

ИРД

 

 

 

9

Умножение вектора на число.

вектор, правило умножения векторов, средняя линия трапеции

-уметь строить произведение вектора на число;

-уметь строить среднюю линию трапеции

ФО

ИРД

 

 

 

10

11

Решение задач.

правило сложения и вычитания векторов, правило умножения векторов

-уметь на чертеже показывать сумму, разность, произведение векторов;

-уметь применять эти правила при решении задач

ФО

ИРД

 

 

 

12

13

Координаты вектора.

координаты вектора, координаты результатов операций над векторами, коллинеарные вектора

-уметь находить координаты вектора по его разложению и наоборот;

-уметь определять координаты результатов сложения, вычитания, умножения на число

ФО

ИРД

СР

 

 

14

Решение задач.

координаты вектора, координаты результатов операций над векторами

-уметь применять знания при решении задач в комплексе

ФО

ИРД

 

 

 

15

Контрольная работа №1

 по теме «Векторы»

 

-уметь применять полученные знания в комплексе при решении задач на определение координат вектора, на определение вектора суммы, разности, произведения

КР-1

 

 

16

17

Работа над ошибками. Простейшие задачи в координатах.

радиус-вектор, координата вектора, метод координат, координата середины отрезка, длина вектора, расстояние между двумя точками

-уметь определять координаты радиус-вектора;

-уметь находить координаты вектора через координаты его начала и конца;

- уметь вычислять длину вектора по его координатам, координаты середины отрезка и расстояние между двумя точками

ФО

ИРД

СР

 

 

18

Уравнение окружности.

уравнение окружности

-знать уравнение окружности;

-уметь решать задачи на применение формулы

ФО

ИРД

 

 

19

Уравнение прямой.

уравнение прямой

-знать уравнение прямой;

-уметь решать задачи на применение формулы

ФО

ИРД

СР

 

 

20

21

Решение задач.

уравнение окружности и прямой

-знать уравнения окружности и прямой;

-уметь решать задачи

ФО

ИРД

 

 

 

22

Контрольная работа №2 по теме «Метод координат»

 

-уметь решать простейшие задачи в координатах;

-уметь решать задачи на составлении уравнений окружности и прямой

КР-2

 

 

Соотношения между сторонами и углами треугольника. Скалярное произведение векторов (14 ч.)

23

24

25

Работа над ошибками. Синус, косинус, тангенс угла.

единичная полуокружность, основное тригонометрическое тождество, формулы приведения

-знать определение основных  тригонометрических функций и их свойства;

-уметь решать задачи на применение формулы для вычисления координат точки

ФО

ИРД

СР

 

 

26

27

Площадь треугольника.

теорема о площади треугольника, формула площади

-уметь выводить формулу площади треугольника;

-уметь применять формулу при решении задач

ФО

ИРД

 

 

28

Теорема синусов.

теорема синусов

-знать теорему синусов и уметь решать задачи на её применение

ФО

ИРД

 

 

29

Теорема косинусов.

теорема косинусов

-знать вывод формулы;

-уметь применять формулу при решении задач

ФО

ИРД

СР

 

 

30

31

32

Решение треугольников.

теорема синусов, теорема косинусов

-уметь находить все шесть элементов треугольника по каким-нибудь трем данным элементам, определяющим треугольник

 

ФО

ИРД

СР

 

 

33

Скалярное произведение векторов.

определение скалярного произведения векторов;

условие перпендикулярности ненулевых векторов;

выражение скалярного произведения в координатах и его свойства.

 

ФО

ИРД

СР

 

 

34

Скалярное произведение в координатах.

 

ФО

ИРД

СР

 

 

35

Применение скалярного произведения к решению задач.

 

ФО

ИРД

СР

 

 

36

Контрольная работа №3

по теме «Соотношение между сторонами и углами треугольника. Скалярное произведение векторов»

 

-уметь применять теорему синусов и теорему косинусов в комплексе при решении задач

КР-3

 

 

Длина окружности и площадь круга (11 ч.)

37

38

Работа над ошибками. Правильные многоугольники

правильный многоугольник, вписанная и описанная окружность

-уметь вычислять угол правильного многоугольника по формуле;

-уметь вписывать окружность в правильный многоугольник и описывать

ФО

ИРД

 

 

 

39

40

41

42

43

44

Нахождение сторон правильного многоугольника через радиусы описанной и вписанной окружностей.

площадь правильного многоугольника, его сторона, периметр, радиусы вписанной и описанной окружностей

-уметь решать задачи на применение формул зависимости между R, r, an;

-уметь строить правильные многоугольники

ФО

ИРД

СР

 

 

45

46

Длина окружности и площадь круга.

длина окружности, площадь круга, площадь кругового сектора

-знать формулы для вычисления длины окружности и площади круга;

-уметь выводить формулы и решать задачи на их применение

ФО

ИРД

СР

 

 

47

Контрольная работа №4 по теме «Длина окружности и площадь круга»

 

-уметь решать задачи на зависимости между R, r, an;

-уметь решать задачи, используя формулы длины окружность, площади круга и кругового сектора

КР-4

 

 

Движения (11 ч.)

48

Работа над ошибками. Понятие движения.

отображение плоскости на себя

-знать , что является движением плоскости

ФО

ИРД

 

 

49

50

Симметрия.

осевая и центральная симметрия

-знать какое отображение на плоскости является осевой симметрией, а какое центральной

ФО

СР

 

 

51

52

53

Параллельный перенос.

параллельный перенос

-знать свойства параллельного переноса;

-уметь строить фигуры при  параллельном переносе на вектор .

ФО

ИРД

 

 

54

55                                                      

Поворот.

поворот

-уметь строить фигуры при повороте на угол

ФО

ИРД

СР

 

 

56

57

Решение задач.

 

решать задачи с применением движений

 

 

 

58

Контрольная работа №5 по теме «Движения»

 

-уметь строить фигуры при параллельном переносе и повороте

КР-5

 

 

Повторение. Решение задач. (10 часов)

59

60

Работа над ошибками.

Об аксиомах планиметрии.

аксиомы планиметрии

-знать все об аксиомах планиметрии

ФО

ИРД

 

 

61

62

63

Решение задач в координатах.

координаты вектора, метод координат

-знать все об аксиомах планиметрии

ФО

ИРД

 

 

64

65

66

Теоремы синусов и косинусов.

теорема синусов, теорема косинусов

-уметь находить координаты вектора через координаты его начала и конца;

- уметь вычислять длину вектора по его координатам, координаты середины отрезка и расстояние между двумя точками

ФО

ИРД

 

 

 

67

Итоговая контрольная работа №6

 

- уметь находить все элементы треугольника по каким-нибудь трем данным элементам, определяющим треугольник

ФО

ИРД

 

 

 

68

Анализ КР.

Итоговое занятие

 

 

 

 

 

 

Сокращения, используемые в рабочей программе:

ФО — фронтальный опрос.

ИРД — индивидуальная работа у доски.

СР — самостоятельная работа.

ПР — проверочная работа.

МД — математический диктант.

Т – тестовая работа.