10-11 классы

Пояснительная записка

к рабочим программам по алгебре и началам анализа,

10 – 11 классы

 

Настоящая программа по алгебре и началам анализа для 10 – 11 классов общеобразовательной школы создана на основе федерального компонента Государственного образовательного стандарта среднего (полного) общего образования по математике и примерной программы общеобразовательных учреждений по алгебре и началам анализа для 10 – 11 класса, составитель Т.А.Бурмистрова, - М.: Просвещение, 2010 к учебнику Алгебра и начала анализа авторов Алимов Ш. А., Колягин Ю М и др.

Данная программа полностью отражает базовый уровень подготовки школьников по разделам программы. Она конкретизирует содержание тем образовательного стандарта и дает примерное распределение учебных часов по разделам курса.

Согласно Федеральному базисному учебному плану для образовательных учреждений РФ для обязательного изучения алгебры  на этапе среднего (полного) общего образования:

- в 10 классе отводится 68 часов из расчета 2 часа в неделю.  Плановых контрольных работ – 7.

- в  11 классе отводится 68 часов из расчета 2 часа в неделю. Плановых контрольных работ – 7.

Программа выполняет две основные функции:

Информационно-методическая функция позволяет всем участникам образовательного процесса получить представления о целях, содержании, общей стратегии обучения, воспитания и развития учащихся средствами данного учебного предмета.

Организационно - планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, определение его количественных и качественных характеристик на каждом из этапов.

При изучении курса математики на базовом уровне продолжаются и получают развитие содержательные линии: «Алгебра», «Функции», «Уравнения и неравенства», «Геометрия», вводится линия «Начала математического анализа».

В рамках указанных содержательных линий решаются следующие задачи:

  • систематизация сведений о числах; изучение новых видов числовых выражений и формул; совершенствование практических навыков и вычислительной культуры, расширение и совершенствование алгебраического аппарата, сформированного в основной школе, и его применение к решению математических и нематематических задач;
  • расширение и систематизация общих сведений о функциях, пополнение класса изучаемых функций, иллюстрация широты применения функций для описания и изучения реальных зависимостей;
  • развитие представлений о вероятностно-статистических закономерностях в окружающем мире, совершенствование интеллектуальных и речевых умений путем обогащения математического языка, развития логического мышления.

 

Изучение математики на базовом уровне среднего (полного) общего образования направлено на достижение следующих целей:

Общеучебные цели:

  • создание условий для формирования умения логически обосновывать суждения, выдвигать гипотезы и понимать необходимость их проверки;
  • создание условий для формирования умения ясно, точно и грамотно выражать свои мысли в устной и письменной речи;
  • формирование умения использовать различные языки математики: словесный, символический, графический;
  • формирование умения свободно переходить с языка на язык для иллюстрации, интерпретации, аргументации и доказательства;
  • создание условий для плодотворного участия в работе в группе формирование умения самостоятельно и мотивированно организовывать свою деятельность;
  • формирование умения применять приобретённые знания и умения в практической деятельности и повседневной жизни для исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств при решении задач практического содержания, используя при необходимости справочники;
  • создание условий для интегрирования в личный опыт новой, в том числе самостоятельно полученной информации.

Общепредметные цели:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин (не требующих углубленной математической подготовки), продолжения образования;
  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственные представления, способность к преодолению трудностей;
  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средстве моделирования явлений и процессов;
  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии через знакомство с историей развития математики, эволюцией математических идей.

     В ходе освоения содержания математического образования учащиеся овладевают разнообразными способами деятельности, приобретают и совершенствуют опыт:

  • построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин;
  • выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; выполнения расчетов практического характера;
  • использования математических формул и самостоятельного составления формул на основе обобщения частных случаев и эксперимента;
  • самостоятельной работы с источниками информации, обобщения и систематизации полученной информации, интегрирования ее в личный опыт;
  • проведения доказательных рассуждений, логического обоснования выводов, различения доказанных и недоказанных утверждений, аргументированных и эмоционально убедительных суждений;
  • самостоятельной и коллективной деятельности, включения своих результатов в результаты работы группы, соотнесение своего мнения с мнением других участников учебного коллектива и мнением авторитетных источников.

Формы организации учебного процесса: индивидуальные, групповые, индивидуально-групповые, фронтальные, классные и внеклассные.

Формы контроля: самостоятельная работа, контрольная работа, тесты, наблюдение, работа по карточке.

Виды организации учебного процесса: самостоятельные работы, контрольные работы, лекции, практикумы.

Требования к уровню подготовки учащихся

В результате изучения математики на базовом уровне ученик должен

знать/понимать:

  • значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
  • значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;
  • универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;
  • вероятностный характер различных процессов окружающего мира;

Алгебра

уметь

  • выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;
  • проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции;
  • вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства;

Функции и графики

уметь

  • определять значение функции по значению аргумента при различных способах задания функции;
  • строить графики изученных функций;
  • описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;
  • решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков;

Начала математического анализа

уметь

  • вычислять производные и первообразные элементарных функций, используя справочные материалы;
  • исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа;
  • вычислять в простейших случаях площади с использованием первообразной;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения;

Уравнения и неравенства

уметь

  • решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, их системы;
  • составлять уравнения и неравенства по условию задачи;
    • использовать для приближенного решения уравнений и неравенств графический метод;
    • изображать на координатной плоскости множества решений простейших уравнений и их систем;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • построения и исследования простейших математических моделей;

Элементы комбинаторики, статистики и теории вероятностей

уметь

  • решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул;
  • вычислять в простейших случаях вероятности событий на основе подсчета числа исходов;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • анализа реальных числовых данных, представленных в виде диаграмм, графиков;
  • анализа информации статистического характера;

 

Содержание учебного курса

 

Алгебра и начала анализа 10 класс

 

№ п/п

Название темы

Количество часов

Контрольная работа

1

Действительные числа

8

№1

2

Степенная функция

8

№ 2

3

Показательная функция

8

№ 3

4

Логарифмическая функция

12

№ 4

5

Тригонометрические формулы

16

№ 5

6

Тригонометрические уравнения

12

№ 6

7

Итоговое повторение курса математики 10 класса

4

           №  7

 

Всего

68

7

 

  • Степень с действительным показателем, 8 часов

Действительные числа Бесконечно убывающая геометрическая прогрессия. Арифметический корень натуральной степени. Степень с натуральным и действительным показателями.

            Основная цель – обобщить и систематизировать знания о действительных числах; сформировать понятие степени с действительным показателем; научить применять определения арифметического корня и степени, а также их свойства при выполнении вычислений и преобразовании выражений.

 

  • Степенная функция, 8 часов

Степенная функция, её свойства и график. Взаимно обратные функции. Сложные функции. Дробно-линейная функция. Равносильность уравнения.

Основная цель – обобщить и систематизировать известные из курса алгебры основной школы свойства функций; изучить свойства степенных функций и научить применять их при решении уравнений и неравенств; сформировать понятие равносильности уравнений, неравенств, систем уравнений и неравенств.

 

  • Показательная функция, 8 часов

Показательная функция, её свойства и график. Показательные уравнения и неравенства. Системы показательных уравнений и неравенств.

Основная цель – изучить свойства показательной функции; научить решать показательные уравнения и неравенства, системы показательных уравнений.

 

  • Логарифмическая функция, 12 часов

Логарифмы. Свойства логарифмов. Десятичные и натуральные логарифмы. Логарифмическая функция, её свойства и график. Логарифмические уравнения и неравенства.

Основная цель - сформировать понятие логарифма числа; научить применять свойства логарифмов при решении уравнений; изучить свойства логарифмической функции и научить применять её свойства при решении логарифмических уравнений и неравенств.

 

  • Тригонометрические формулы, 16 часов

Радианная мера угла. Поворот точки вокруг начала координат. Определение синуса, косинуса и тангенса угла. Знаки синуса, косинуса и тангенса. Зависимость между синусом, косинусом и тангенсом одного и того же угла. Тригонометрические тождества. Синус, косинус и тангенс углов α и –α. Формулы сложения. Синус, косинус тангенс двойного и половинного угла. Формулы приведения. Сумма и разность синусов и косинусов.

            Основная цель – сформировать понятия синуса, косинуса и тангенса, котангенса числа; научить применять формулы тригонометрии для вычисления значений тригонометрических функций и выполнения преобразований тригонометрических выражений; научить решать простейшие тригонометрические уравнения sin x=a, cosx=a при а=1, -1,0.

 

  • Тригонометрические уравнения, 12 часов

Уравнения sinx=a, cosx=a tgx=a. Тригонометрические уравнения, сводящиеся к алгебраическим. Методы замены неизвестного и разложения на множители.

Основная цель – сформировать умение решать простейшие тригонометрические уравнения; ознакомить с некоторыми приемами решения тригонометрических уравнений.

 

  • Итоговое повторение курса математики 10 класса, 4 часа

Показательная функция. Решение показательных уравнений и неравенств. Логарифм. Решение логарифмических уравнений и неравенств.   Решение систем уравнений..

 

 

Алгебра и начала анализа 11 класс

 

№ п/п

Название темы

Количество часов

Контрольная работа

1

Тригонометрические функции

7

№1

2

Производная и её геометрический смысл

15

№ 2

3

Применение производной к исследованию функций

16

№ 3

4

Интеграл

9

№ 4

5

Элементы комбинаторики

7

№ 5

6

Элементы теории вероятностей

7

№ 6

7

Итоговое повторение курса математики 11 класса

7

           №  7

 

Всего

68

7

 

 

  • Тригонометрические функции, 7 часов

Область определения и множество значений тригонометрических функций. Четность, нечетность, периодичность тригонометрических функций. Свойства функций y=cosx, y=sinx, y=tgx и их графики.

Основная цель – изучить свойства тригонометрических функций, научить обучающихся применять эти свойства при решении уравнений и неравенств, научить строить графики тригонометрических функций.

  • Производная и её тригонометрический смысл, 15 часов

Определение производной. Производная степенной функции. Правила дифференцирования. Производные некоторых элементарных функций. Геометрический смысл производной.

Основная цель – ввести понятие производной; научить находить производные с помощью формул дифференцирования; научить находить уравнение касательной к графику функции.

  • Применение производной к исследованию функций, 16 часов

Возрастание и убывание функции. Экстремумы функции. Наибольшее и наименьшее значение функции. Производная второго порядка, выпуклость и точки перегиба. Построение графиков функций.

Основная цель – показать возможности производной в исследовании свойств функций и построении их графиков.

  • Интеграл, 9 часов

Первообразная. Правила нахождения первообразных. Площадь криволинейной трапеции. Интеграл и его вычисление. Вычисление площадей фигур с помощью интегралов. Применение производной и интеграла для решения физических задач

Основная цель – ознакомить с понятие интеграла и интегрированием как операцией, обратной дифференцированию.

  • Комбинаторика, 7 часов

Правило произведения. Перестановки. Размещения без повторений. Сочетания без повторений и бином Ньютона.

Основная цель – развить комбинаторное мышление обучающихся; ознакомить с теорией соединений; обосновать формулу бинома Ньютона.

  • Элементы теории вероятностей, 7 часов

Вероятность события. Сложение вероятностей. Вероятность произведения независимых событий.

Основная цель – сформировать понятие вероятности случайного независимого события; научить решать задачи на применение теоремы о вероятности суммы двух несовместных событий и нахождение вероятности произведения двух независимых событий.

  • Итоговое повторение курса математики 11 класса, 7 часов

Выражения и преобразования. Уравнения и неравенства. Функции. Текстовые задачи.